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The nonlinear instability of general linearly stable systems allowing linear negative-energy perturba-
tions is investigated with the aid of a multiple-time-scale formalism. It is shown that the basic equations
thus obtained imply resonance conditions and possess inherent symmetries which lead to the existence of
similarity solutions of these equations. These solutions can be of an explosive type, oscillatory, or static.
It is demonstrated that at least some of the oscillatory and static solutions are normally linearly unstable.

PACS number(s): 03.20.+1i
I. INTRODUCTION

In 1925 Cherry [1] discussed two oscillators of positive
and negative energy that are nonlinearly coupled in a spe-
cial way, and presented a class of exact solutions of the
nonlinear equations showing explosive instability in-
dependent of the strength of the nonlinearity and the ini-
tial amplitudes, although linearized theory predicts abso-
lute stability. (For additional references on nonlinear in-
stabilities see Weiland and Wilhelmsson [2] and
Wilhelmsson [3]; see also Ref. [4].) Cherry’s Hamiltonian
is

H=—lopi+q})+1o,(p3+4q3})

a
+3[2q1p1p2—qz(q?*p%)] : (1

The constant a measures the effect of nonlinearity. For
a=0 one has two uncoupled oscillators of frequencies
®,>0 and w, >0 which possess negative and positive en-
ergy, respectively. If w,=2w,, one has a third-order reso-
nance. For this case Cherry found the following exact
two-parameter solution set:

2 -2
= sinlwt+y), p,= e—atcos(w1t+y) ’
-1 _ ()
92 = Sin2w +27), py=—— —cos(20y1 +2y)

where € and y are determined by the initial conditions.
These solutions possess the mentioned features. Pfirsch
[5] reformulated Cherry’s example and generalized it to
three oscillators satisfying the resonance condition
> ,0;=0. To this end, complex quantities given by

£ = p; tig; £r= pi—ig; 3)

vz ST

were introduced. This constitutes a canonical transfor-
mation to £; as the new coordinates and to i§} as the new
momenta. Cherry’s Hamiltonian then becomes

H=—wl§f§1+w2§;‘§2—\/§a( %§2*§T2§;) . 4)

This exhibits a simple structure of the nonlinear term
which also allows a simple physical interpretation: in
quantum theoretical language it means the simultaneous
annihilation or creation of two quanta of frequency w,
with energy —#iw,; each and of one quantum of frequency
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, with energy +7#w,. If w,=2w,, these processes leave
the energy unchanged and therefore allow the amplitudes
to grow. The same holds for the first two terms in H.
The growth of the amplitudes is, of course, only possible
for perturbations with vanishing H. The generalization
to three coupled oscillators is given by the Hamiltonian

3
H:kE o8k Tag 563t atETE3ET . (5
=1

With the frequencies w,, satisfying the three-wave conser-
vation law ¥, @, =0, a three-parameter solution set is

BRI
ia

iogtt+ip,
|

3
e——|alte , > @r=0. (6)

i=1

%

If the resonance condition is not satisfied, the system can
be shown to be still explosively unstable; the initial per-
turbations, however, must exceed a certain threshold [5].
It is easy to generalize this further to an arbitrary number
of oscillators, but the coupling terms are restricted to be-
ing Cherry-like. In quantum-mechanical language this
means that the coupling terms consist of products of
creation operators only and annihilation operators only.
This is, however, not the usual situation, in which non-
Cherry-like coupling terms occur in addition. In the
present paper general coupling terms are investigated on
the basis of a first-order multiple-time-scale formalism.
This assumes that the linear solutions define fast time
scales, whereas the nonlinear terms introduce additional
slow variations of the dominant terms. The formalism
eliminates then all but the fast-time-scale resonant terms
from the equations for the lowest-order quantities. Since
an explosive process is eventually a fast process, this
treatment allows one to discuss only the initial, still slow
nonlinear phase. That this might not be too strong a lim-
itation is shown by the example of the motion of a
charged particle (e=m =1) in a potential
—(x?+y?)/2—ex3/3 and a constant magnetic field B in
the z direction (see the Appendix). For B >2 the linear-
ized motion is stable, constituting a combination of gyro
and drift motion. The gyro motion has positive energy
and the drift motion negative energy. The nonlinear
terms in the equations of motion couple these two types
of motion and, in the case of resonance, i.e., the frequen-
cy of the gyro motion is twice that of the drift motion,
they lead to nonlinear instability for almost all initial per-
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turbations. This is found by solving the equations numer-
ically. For initial conditions with x2+y2 and %%+p2 of
order 1 an exponential runaway, essentially in the y direc-
tion, eventually occurs; this contradicts the long-time ex-
plosive behavior of the approximate solutions obtained by
the first-order multiple-time-scale formalism, but the ini-
tial phase, lasting for times of the order 4€ !, is well de-
scribed by them. Initial conditions with x2+y? and
%2+yp? of order € 2 or larger indeed lead to explosive
behavior. But such initial conditions are outside the
range of validity of the first-order multiple-time-scale for-
malism. The basic equations resulting from the applica-
tion of the first-order multiple-time-scale formalism to
the above “particle-on-a-hill” problem are derived in the
Appendix. They are identical with the reformulated
two-oscillator equations of Cherry.

When the fast-time-scale resonance is not exact, a case
which is not investigated in this paper, nonvanishing
threshold amplitudes should play a role like in the Cherry
case. Also not treated here is the influence of the fast
time scales which will generally result in chaotic motion
[6]. An illuminating discussion of this feature was
presented by Kueny [7].

In the light of these considerations and limitations an
investigation of general systems on the basis of the
multiple-time-scale formalism appears to be of interest.
In Sec. II the basic equations for general systems result-
ing from the application of the multiple-time-scale for-
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H=3 omfn;+eUln,nf) ,
i

. - (7)
Une,mi)=[UOpe,mi)1* .

The constants ; are real and can be positive or negative.
The sum on the right-hand side yields linear contribu-
tions to the equations of motion, whereas €U leads to
nonlinear terms, € being a smallness parameter.

The equations of motion are

;= —iwm;—ie ou ®)
o/
With
m=e g ©
one obtains
g=—ice' ' OU (10)

* _ —imkt _ +iwkl * °
o |m=e o, x=¢ L34

For the initial phase of a nonlinear instability one can as-
sume a slow time evolution compared with that corre-
sponding to the w;’s. The nonlinear time scales must re-
late to € and therefore a multiple-time-scale formalism
should be adequate to obtain an approximate solution.
The perturbation treatment consists in an expansion

. - (=3 €& 7,1y, ...), T,=€",
malism are derived; Sec. III draws conclusions from the J ? 8770 §
inherent symmetries of these basic equations; Sec. IV d 3 1y
discusses similarity solutions relating to these sym- E_:E e"a——- .
metries; Sec. V presents a discussion of the similarity to Tn
solution.s; Sec. V! ir.lves..tigates t.he linear stability of static Up to first order this yields
and oscillatory similarity solutions; Sec. VII presents ex-
amples with non-Cherry-like coupling terms. A
! pr—
a7y ’
II. MULTIPLE-TIME-SCALE FORMALISM dED g (12)
FOR OBTAINING THE BASIC EQUATIONS 3 Lo+ a_’
7o 1
Let 7,(z) be the dynamic variables of a Hamiltonian
system, i=1,... . The canonical conjugate to 7; be ior U
P,=in}, where the asterisk denotes the complex- =—ie ' Oa—* o 700 oy 0%
conjugate quantity. The dynamic systems we are in- i me=e i om x=e
terested in are then described by Hamiltonians of the
form From these equations one obtains
J
o &Y o
EN(ro, ) =E0, 7+ [ | — = —ie == o o |dTh (13)
0 o7y on! me=e Ok °§(°)mk*:€ KTog(o)
The requirement that £ must stay finite for 7,— oo yields an equation for £\*’ concerning its 7; dependence:
ag(O) o i
5 =i lim if e“""°a—({ i i AT (14)
T To—® Tg v 0 an; me=e K og(kmmk*:e kTog(0*
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When
W(é-(ko)’g(kO)*)
1 TO —iew, T +iw oA
=€ lim — k70 k7’0 (0)*)dT'
dm fo £ &k 0

(15)

is introduced and the upper index 0 of &’
(14) becomes

is dropped, Eq.

dE&.
%6 __ AW (16)
dt ogr
This equation derives also from the Lagrangian
L=i3 &&6—WEED . (17

From now on the Lagrangian (17) will be the basis for
further investigations.

III. INHERENT SYMMETRIES

We first note that corresponding to the reality property
(7) of U it holds that

W(ED, 60" =[W(

Let us now assume that W is a homogeneous function of
degree n. From its definition (15) the following property
of W then results:

(atio))p la—iw;)p

§ire §F)=e"W(E;,57)

where a and @ are real quantities. For a=0 this relation
also holds for general W. From Eq. (19) one derives

g(O)*)]* (18)

Wi(e , (19)

LW(e(a+imi)¢7§ (a—iw; )ngl
de
=3 (oz+ico-)§-i a—iew;)EF
: i'5i g ’ag,
x I"/,(e(az+iwi)<p§ (a—iw; )(pé_l
=nae"PW(E, E¥) . (20)

When taking this relation at ¢ =0 its real and imaginary
parts yield

2

W=nW ,

|

where the second relation is also valid for general W.
Application of the equations of motion to relations (21)
yields

Z(§f§'7~
Z_wi(gié?"*'é‘?éi):o

§in, t&!

agl agl

21

Y

2 aé ot

ErE)=inW ,
22)

The second of these equations yields the new constant of
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the motion for general W:
S w;|&;[*=const . (23)
i

This is just the energy of the linearized motion. From the
Lagrangian (17) it also follows that

W, &7)

Hence both the linear and nonlinear contributions to the
total energy are constants of the motion.

=const . (24)

IV. SIMILARITY SOLUTIONS

From relation (19) it follows that the Lagrangian (17) is
invariant to the transformation

(atio;)p

§i=e ' Hi >
—iw;)
gr=c* Ty (25)

t=e~(n~2)a¢7_ ,

with a and ¢ real and time independent. This means that
U; is a solution of

d _ OWlu;,ut)

L 26
dT'u" ! a'u,;." 26)

if £; solves Eq. (16). This allows us to construct a similar-
ity solution y,(z) in the following way:

§i(H)=e

The exclamation mark above the equality sign denotes
that p,;(¢) is required to be a similarity solution. For ¢
and 7, infinitesimally small the required relation becomes

(a+iaw;

)q’yi(e(n——Z)awt)é#i(t_’_T(p) . 27)

(atio;)pp(t)+(n—2)aptp;(1)=T1,1,(1) . (28)

The relation between ¢ and 7, is obtained by taking this
relation at ¢t =0:
(atio;)pu;(0)=74,41,(0) . (29)

Since ¢ and 7, must be real and independent of the index
i, Eq. (29) implies a restriction on the initial conditions of
u; and g;, which can be stated as

£:(0) 1
©i(0) atio;

BE_E:
Te

(30)

must be real and independent of i.
With Eq. (29) the following equation for p;(#) results:

—2)a 4(0) .(0)
(n=2a LO) 0Ly 31)

I T e, 1,0 12,(0)

The general solution of this equation is
#;(0)
[1 —(n—2)apt ](a+iwi)/a(n-2)

where the definition (30) has been used. For a— « and
af370 the simple explosive behavior known for the Cher-
ry oscillators is recovered. For a—0 the solution (32) be-

ui(t)= (32)
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comes purely oscillatory:

e Pt 33)

A possible situation is also that =0 and « finite. This
means

pi(t)=p;(0

wi(t)=p;(0) . (34)

We conclude this section with the derivation of the equa-
tions for the u;(0)’s, @ and B. These equations are ob-
tained from Eq. (30) on elimination of f;(0) by means of
the equations of motion. This transforms Eq. (30) into

AW (10N, (0))
auf(0)

Blatio;)u;(0)+i (35)

a and B have the character of eigenvalues for these non-
linear equations.

V. DISCUSSION OF SIMILARITY SOLUTIONS
We start this section by noting the following transfor-
mation property of Eq. (35):

A+iBo;

u;(0)=e m;(0), e“ and B are real , (36)

transforms Eq. (35) into
oW (m;(0),m*(0))

—(n—2)4 . .
(a+iw;)m;(0)+
e Blatiw;)m i am*(0)

(37)

This means that also m; is a solution of Eq. (35), but with
a modified B. In order to study the effect of this transfor-
mation on the similarity solutions, we rewrite Eq. (32) as

wi(t)= — =
4 [(n _Z)aB](a+lwl )/aln—2)
x 1
(atio;)/aln—2) ’
(z,—1) ! 3
8
t 1 (38)
¢ (n—2)af
A similar solution can be written for m;(¢). Expressing

the quantities m;(0) and the corresponding S in this solu-
tion by the quantities 11,(0) and the original B one obtains

m (t)_ei(A/a—B)w,. #i(0)
A (a+io,)/aln —2)
[(n—2)aﬁ]a iw; a(n
1
X A (at+io;)/aln—2) ’
(T,—1)
’ie=e‘""2’Ate ‘ (39)

The main effect of the transformation is therefore a
change of the explosion time ¢,, whereas a remains un-
changed.

A special transformation of Eq. (35), which corre-
sponds to A =i, is

p=—m;, B=(—1B, (40)

where f3 is the B corresponding to m;.
We now find a and B from Eq. (35) in terms of the
1;(0)’s. From these equations one derives

Blatio | P+ L W (i (0),p? () _
zi, atio;)|y; l;”i 3 (0) ,
AW (u;(0),u}(0))
Ei,ﬁ(a-i-iwi Yoo, | |2 +i ;wi#? 'l:),u,?‘((:: =

41)

The imaginary part of the first and the real part of the
second equation yields, by means of relations (21),

2/32wi§ui|2=—nW , 2aB3 o;|u;1*=0 . (42)

These relations have the important consequence that
aW=0. (43)

a#0 requires therefore W =0, in agreement with the fact
that W can be constant in this case only if it vanishes.
If $,;0;|1;1?>70 holds, then

af=0 (44)

follows. Furthermore, 3, 0;|u;|*=0 implies W=0.

The real part of the first and the imaginary part of the
second of the relations (41) yield equations for a and S
which can be used under all circumstances, also when
S,0;1;1>=0, in which case Egs. (42) do not contain a
and 8 anymore:

« W — ow
M a'u;., i a'ui
aff=—i ,

22 |:ui|2
i

(45)

oW L oW
aur o,

22“’%|#i|2
i

[Ths

S o;
i

B:.__

An example is the three Cherry oscillator case, for
which p}(dW/du}) is independent of i and 3,;w;=0.
With these properties the second of Eq. (45) yields B=0.
On the other hand, the first of Egs. (45) guarantees
af3#0. Hence, for the Cherry oscillators a=c holds
and therefore the simple form of an explosive instability
is recovered.

VI. STABILITY OF STATIC
AND OSCILLATORY SIMILARITY SOLUTIONS

The preceding section showed that there can exist sys-
tems which possess only static or oscillatory similarity
solutions but not explosive ones. The question is then
whether these static or oscillatory similarity solutions are
stable or not. This question is now investigated by linear-
izing the equations of motion around such similarity solu-
tions p,(¢).
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The starting point is Eq. (16) together with Eq. (33).
We introduce perturbations by

E,(1)=[1;(0)+8;()]e " . (46)
The first-order contributions to Eq. (16) are
. 3w W
8¢ +ifw;8&;=—i 8&, —i SEX |
gl lel §l laé_;kaé_k gk lagragz gk
s R 47)
a w* a
887 —iPw;8&F = ) 8 ,
T A T T

where the derivatives of the function W are at
& (t)=p,;(¢t) and &£ (1)=p} (). One could now split these
equations into real and imaginary parts. Let this splitting
for 8£; and &£} be

8, =u;+iv;, , 8&F=pu;—iv; . (48)
In the resulting equations for u; and v; one can make the
Ansdatze

u;=ugeM, v,=v,eM. (49)

A, u,, and v,; can then be complex again. It is, however,
not necessary to perform the splitting explicitly. Equa-
tion (49) means that

8 e, BEF xeM (50)

can also be assumed, but then it no longer holds that
these quantities are complex conjugate to _each other. If
one denotes these quantities by 8§, and 8&*, 2 ;» one obtains
from them u,;, v, and 8&; according to

%(8§i+8§*i)=ucielt ’
-21—i(8§/‘\i—8§,;‘,~)=vc,~e}“, 51)

Re(ue*)+i Re(v,e™)=8¢; .
With the quantities 8£; and 8& *i Eqgs. (47) become
FW o . FW o4

A+iBw,)8E, = —i 8E, — 8E%)
RS T arag, P agragt O
(52)
82W* FPW* ~
A—i )8 S — o) i o)
o

These equations form a non-Hermitian eigenvalue prob-
lem with, in general, complex eigenvalues A. If the real
part of one eigenvalue A is positive, the perturbation is
unstable. From the transformation property (40) it fol-
lows that for odd n with A the value — A also occurs as an
eigenvalue for an unperturbed state which results from
the original one by the transformation (40). Hence, if for
odd n the real part of A does not vanish, an unstable per-
turbation exists. Because of the non-Hermitian character
of the eigenvalue problem this should be the normal situ-
ation. This is illustrated in the next section by means of
examples. These examples show also that the 8£;’s can
sometimes be nonlinearly limited to the order of the u;’s

VII. EXAMPLES WITH NON-CHERRY-LIKE
COUPLING TERMS

A. Three-mode example

The simplest example involving
positive-energy modes is given by

W=y& 586+ y*EX 15,67,

Cl)_l-‘_l, CL)2=2,

negative- and

(53)
Cl)3:3 .

The corresponding equations of motion together with Eq.
(35) are

E_\=—iy*EE =[Bla—ipu_,], (54)
&= —iyE_&=[Bla+2iu,], (55)
&= —iy*E* 5, =[Bla+3ily,] . (56)

These equations have similarity solutions y;(¢) corre-
sponding to 3=0 with

p—170, pp=p;=0, (57a)
w70, p_=u;=0, (57b)
1370, pu_;=u,=0. (57¢)
The corresponding nontrivial linearized equations are
8= —iyp_ 188y, 8&=—iy*u* 8¢, , (58a)
86 1= —iy*u,88% , 8&;=—iy*u,8% (58b)
86\ =—iy*uidE, , 8&=—iyu8E_, . (58¢c)
From these equations one obtains
=lyPlp_ 1?88, , (59a)
8571 1y P86 -y (59b)
=l ?lu,|?8¢, . (59¢)

Equations (57a), (58a), (59a), (57¢c), 58(c), and (59¢) pos-
sess only oscillatory solutions, whereas Eqs. (57¢), (58c¢),
and (59c) also have an unstable solution. This agrees
with the general expectations of the preceding section;
the eigenvalues A discussed there are, for the present ex-
ample, either real or purely imaginary.

B. Four-mode example
We consider again a third-order W:

W=3 35 Vninpn b bnn, + 75 mm En E0EN,

ny Ny N3
* * * *
+pn1,n2n3§n1§n2§n3 +pnl,nzn3§nl§n2§n3 M (60)
The resonance conditions are

«<§
7’nlnzn3 mn1+wn2+wn3 ’

o
pnl,n2n3 8(1)”1—0)"2‘&)"3 4

and the equations of motion
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ié:nl = 2 anl,n2n3§n2§n3 +2p:2,n|n3§n2§:3

ny ny
+378 wn EREL (62)

A simple four-oscillator example is given by
w,=n , n=-—3,1,2,3. (63)

The only nonvanishing coefficients are

P2,11=P2 5 P3,12=P3> Y -32=Y (64)

and in addition all the coefficients corresponding to their
symmetry. The function W is then

W=6y&_s616,+67*E% 6165 +p.63 61 Hp3 6,61
+2p363616,+2p36:6TE5 (65)

and the equations of motion become
i§—3:67’*§f§; )
i€ =2p3&,61 T2p38:65 +6y*E3E% 5,
i§2=P2§%+2P§§3§T +6y*ETEr s,
i£;=2ps6:£; -
From the first and the last of these equations the follow-
ing constant of the motion is obtained:

*
§_3+%)*L§3 =c_;=const . (67)
3

This constant of the motion has an important conse-
quence. For an explosive instability to exist

Zwi|§i‘2:0

must hold, as follows from Eq. (42). Also the constant of
the motion (67) must vanish. The combination of these
two requirements leads to

oyl _,

-3
|P3|2

|§3|2+]§1]2+2|§2 2=0. (68)

This means that explosive instabilities are possible only
for

9y 12> |psl* . (69)

One can indeed prove the existence of solutions of the
form

an
é’n(t):,u,,(t):T (70)

if the inequality (69) is satisfied.

If this is not the case, one can look for static and oscil-
latory similarity solutions and investigate their linear sta-
bility properties. A simple static similarity solution u; is
obviously

pn1=p,=0 and pu;, p_, arbitrary . (71)

Linearization of Egs. (66) around this solution with the
perturbations = exp(At) and use of Eq. (67) yields the fol-

lowing set of equations:

IASE_,=0,

. 2
t7~5§1=;3—[<|p3l2—9|7|2)u3+37*psc‘13]8§§ ,
5 (72)
M5§2=‘p—[( |P3|2_9|7’|2)#3+3?’*P3¢‘i3 1887,
3

iABE,=0 .

The combination of the 8§, equation with the 8£3 equa-
tion leads to the dispersion relation
2

2
A= p‘[(|P312_9|7’|2)§3+37’*P3C13] , (73)
3

which means instability.

Other examples are oscillatory solutions of the kind
(33). Such solutions were found by Weitzner [8], who
also proved that they are linearly unstable.

We conclude this section with the observation that the
6&,’s are nonlinearly limited to the order of the u,’s by
3,0, |&;[*=const, if condition (69) is not satisfied.

VIII. SUMMARY

A multiple-time-scale formalism is applied to investi-
gate the nonlinear instability of linearly stable systems.
Systems possessing linear negative-energy perturbations
are shown to be generally nonlinearly unstable if these
perturbations are in resonance with positive energy per-
turbations. The instabilities can be explosive instabilities
or linear instabilities of nonlinear oscillatory or static
solutions of the basic equations resulting from the appli-
cation of the multiple-time-scale formalism. The ampli-
tudes of these linear instabilities can sometimes be strong-
ly limited by the fact that the energy of the linearized
theory and the total nonlinear energy are constants of the
motion and that there might exist at least one additional
constant tying together negative- and positive-energy
modes.
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APPENDIX: “PARTICLE ON A HILL”
The equations of motion are
X —yB—x —4ex?=

With

, J+xB—y=0.

—1/4
BZ
S

x+iy= n

the linearized equations become
f+iBn—n=0.
The Ansatz

—iwt
n<e
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leads to the dispersion relation
—w?*+wB—1=0

with the solutions

B B2 172

[ 3“*‘ —4——1] =w,,
1/2

T2 4 -

These frequencies have the properties

o,‘to_=w,—w,=B ,

B 172
Oy —O_Tw;Tw,=2 —-4——1] )
O o_~=—ww,=1,
172
2
0wl —1=0r—1=2 %——1 o4
172
B2
:2 _4‘_1] Cl)l )
1/2
2
0t —1=wi—1=—2 %——1 o_
172
BZ
=2 T—l @,

We can now represent
x +iy=n,+n3

with the Lagrangian for 7; and 7, corresponding to the
nonlinear equations of motion given by

L=int(9+iom)+ins (g, +ioym,)

BZ —3/4
-1 l (m+0f+mtn3) .

€

24

Hence inf and i7n; are the canonical momenta to 7, and
1,. The Hamiltonian resulting from this Lagrangian,

H=0,|n,|>+aw,|n,]

—3/4
——-1] (ot +mp i)

belongs to the class of Hamiltonians defined by Eq. (7).
Application of the procedure of Sec. I especially of Eq.
(15), yields for o, +2w,=0 the fast time-averaged interac-
tion Hamiltonian

W(ELEl 68 =—— —oalEte’+a8) .
8 %— —1

This agrees exactly with the reformulated nonlinear in-
teraction term of Cherry.
Figures 1-3 present a comparison of exact numerical

. t 160
4/ <|

FIG. 1. Particle on a hill: Vix24+p? vs t for €=0.04,
xo=—0.5012, y,=0.3534, %,=0.4952, and y,=0.3585. Solid
line, numerical solution; dotted line, approximation.

0 — t 160
4/ ¢|

FIG. 2. Particle on a hill: Vx2+y? vs ¢ for €=0.12,
xo=—0.5012, y,=0.3534, x,=0.4852, and y,=0.3656. Solid
line, numerical solution; dotted line, approximation.

x2 +y

i

0 ‘ € 60
4/ ¢l

FIG. 3. Particle on a hill: Vx>+p2 vs ¢t for €=0.12,
xo=—0.7020, y,=—0.3705, %,=—0.2910, and y,=0.7354.
Solid line: numerical solution, dotted line: approximation.
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FIG. 4. Particle on a hill: Particle orbit in x,y plane together
with contour line of the potential through the saddle point. The
initial conditions are the same as in Fig. 1.

solutions (solid lines) with approximate solutions (dotted
lines) obtained by the application of the multiple-time-
scale formalism up to the first order, which means in-
clusion of the first-order terms according to Eq. (13). All
cases show good agreement between the exact and ap-
proximate solutions for the initial phase, which lasts for a
time of the order 4e ! for initial values of x2+y? of the
order 1. For larger times the exact and approximate
solutions differ. The final runaway as described by the
exact solutions sometimes occurs only after a second ““at-
tack,” Fig. 2, or after dwelling for a while in the saddle-

FIG. 5. Particle on a hill: Contour line plot of the potential
—(x2+y?)/2—ex3/3. S: saddle point.

point region formed by the combination of the second-
and third-order constituents of the potential, Fig. 3. This
can be seen more directly in Fig. 4, which also contains a
contour line of the potential through the saddle point. A
full contour line picture of the potential is presented in
Fig. 5. A final exponential growth, often occurring in-
stead of an explosive behavior, is caused by the x* poten-
tial stopping the drift at x values with |x| <<|y| for large
|x|; the particle then falls down the —y? potential, lead-
ing to the exponential time dependence.
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